The future of solar power has looked increasingly bright in recent years thanks to the plummeting cost of silicon solar panels and a global push for clean energy sources to address climate change. In the most optimistic scenarios for the power source, solar generation will increase 16-fold between 2016 and 2040, according to data from the International Energy Agency.

But now new research into a class of materials known as perovskites underway in U.S. government labs and other facilities around the world promises to accelerate rapidly even the most optimistic projections for solar deployment. If they make it from the lab to commercial use perovskites could dramatically change the market for the renewable energy source offering potential for panels to capture energy virtually any surface facing the sun.

“The future of perovskites is breathtaking,” says Varun Sivaram, a fellow at the Council on Foreign Relations and author of “Taming the Sun,” a book on the future of solar power. “For solar to really anchor a clean energy transition we’re going to need technological innovation and perovskite is the frontrunner in my mind.”

You don’t need a physics or engineering degree to understand the primary reasons why perovskites potentially serve as a superior alternative to traditional solar cells. For one, perovskite solar cells are flexible and easy to produce. They can be painted or sprayed on a surface from an ink solution or churned out of a printer like a newspaper. That flexibility means they can be attached to virtually anywhere.

During a visit to the National Renewable Energy Lab in Golden, Colo., researchers Joseph Berry and David Moore excitedly point out the various research projects underway to transform perovskites from a lab phenomenon to a commercial reality. Moore lifts a small surface with visible perovskite solar cells he painted on himself with a brush purchased at a local craft store, showing how easily the cells can be applied. Berry points to an experiment where perovskite cells are being held under bright light to test their durability. Moore holds up a light to a solar cell that dims in response to the light, mimicking potential protection against sunlight.

Read more: Inside the New Technology That Could Transform the Solar Power Industry