A team of solar energy researchers from Case Western Reserve University in Ohio has been awarded $1.35 million from the U.S. Department of Energy Solar Energy Technologies Office to continue its work toward increasing the efficiency and lifetime of photovoltaic modules—specifically aimed at pushing their lifespan to 50 years.

The project is being led by Roger French, the Kyocera Professor in the Materials Science and Engineering Department at the Case School of Engineering and head of the SDLE Research Center at Case Western Reserve.

“This is the new challenge for solar energy—a 50-year lifetime for photovoltaic (PV) modules,” said French, whose research team had in 2017 received a similar $1.47 million Department of Energy grant to test new commercial silicon solar cell technology. “Right now, the lifetime of a solar panel is about 25 to 30 years, so this is a big jump, but one that can be made.”

Building a better solar panel

Specifically, the research at Case Western Reserve is expected to help determine the relative value of two different kinds of module construction for encapsulating photovoltaic cells: one of double-glass construction and the other known as glass/backsheet, where the backsheet is instead a multilayer polymer laminate.

Each type of PV module construction has its advantages and disadvantages: double-glass better protects the structural integrity of the PV cells inside, but can also trap corrosive degradation products inside; glass/backsheet, on the other hand, “breathes” better to allow corrosives to leak out, but offers less physical protection to the inside components.

“My background is in chemistry, so I’m looking at the chemical degradation of polymers inside the solar panels, especially in the glass-glass construction, as many manufacturers are starting to use that method,” said Laura Bruckman, an associate research professor at the center.

Read more: Researchers at Case Western Reserve University want to push solar panel lifespans to 50 years